Lakehouse Design & Implementation Guide | CONFIDENTIAL

FABRIC LAKEHOUSE
DESIGN & IMPLEMENTATION GUIDE

Schema Design • Partitioning • Delta Lake • SQL Endpoint • Best Practices

Version 1.0 | January 2026

Table of Contents

1. Lakehouse Fundamentals
The Fabric Lakehouse combines the best attributes of data lakes and data warehouses, providing a unified platform for data engineering, analytics, and business intelligence. This guide covers design patterns and implementation best practices.
1.1 What is a Lakehouse?
A Lakehouse is a modern data architecture that combines the flexibility and scale of a data lake with the data management and ACID transaction capabilities of a data warehouse.
Key Characteristics
1. Open Format: Data stored in Delta Lake (open Parquet-based format)
1. ACID Transactions: Full transaction support for reliability
1. Schema Enforcement: Optional schema enforcement and evolution
1. Multi-Engine Access: Spark, SQL, and Power BI access same data
1. Time Travel: Query historical data and rollback changes
1. Unified Storage: Single storage layer for all data types
1.2 Lakehouse vs. Data Warehouse
	Aspect
	Fabric Lakehouse
	Fabric Warehouse

	Primary Engine
	Apache Spark
	T-SQL

	Best For
	Data engineering, ETL, ML
	BI queries, reporting

	Data Format
	Delta Lake (Parquet)
	Delta Lake (Parquet)

	Schema
	Flexible, schema-on-read
	Strict, schema-on-write

	Files Folder
	Yes (/Files)
	No

	SQL Writes
	Read-only via endpoint
	Full read/write

1.3 Lakehouse Structure
Every Lakehouse has two primary storage areas:
/Tables Folder
Contains Delta tables managed by the Lakehouse. Tables created here are automatically registered and queryable via SQL endpoint.
1. Managed tables with automatic metadata management
1. Delta format with ACID transactions
1. Automatic statistics collection
1. SQL endpoint access for T-SQL queries
/Files Folder
Unmanaged storage for raw files, temporary data, and non-tabular data.
1. Store raw landing files (CSV, JSON, Parquet, etc.)
1. Archive historical source files
1. Store non-tabular data (images, documents)
1. Stage data before loading to tables

2. Table Design
Effective table design is critical for Lakehouse performance and maintainability. This chapter covers schema design, naming conventions, and data modeling best practices.
2.1 Naming Conventions
Table Naming
Use consistent naming that conveys purpose and layer:
[layer]_[domain]_[entity]_[qualifier]
Examples:
1. brz_claims_header (Bronze claims header)
1. slv_member_master (Silver member master)
1. gld_claims_fact_daily (Gold claims fact, daily grain)
1. gld_dim_provider (Gold provider dimension)
Column Naming
1. Use snake_case for all column names
1. Prefix surrogate keys with sk_ (sk_member_id)
1. Prefix business keys with bk_ (bk_member_id)
1. Prefix flags with is_ or has_ (is_active, has_dependents)
1. Prefix dates with _date suffix (effective_date, created_date)
1. Prefix timestamps with _ts suffix (ingestion_ts, modified_ts)
2.2 Schema Design Patterns
Pattern: Flat Denormalized
Wide tables with all attributes in single table. Best for Gold layer reporting.
1. Pros: Simple queries, fast reads, self-documenting
1. Cons: Data redundancy, larger storage, update anomalies
1. Use for: Fact tables, ML feature stores, reporting datasets
Pattern: Normalized (3NF-light)
Separate tables for entities with foreign key relationships. Best for Silver layer.
1. Pros: Minimal redundancy, consistent updates, clear entities
1. Cons: Requires joins, more complex queries
1. Use for: Canonical model, master data, reference data
Pattern: Star Schema
Central fact table surrounded by dimension tables. Best for Gold analytics.
1. Pros: Optimized for aggregation, intuitive for analysts
1. Cons: Requires dimension management, join overhead
1. Use for: BI reporting, dimensional analysis, OLAP
2.3 Data Types
Choose appropriate data types for storage efficiency and query performance:
	Use Case
	Recommended Type
	Notes

	Identifiers
	BIGINT or STRING
	STRING for GUIDs, BIGINT for surrogate keys

	Dates
	DATE
	Not TIMESTAMP unless time component needed

	Timestamps
	TIMESTAMP
	Store in UTC, convert at presentation

	Money
	DECIMAL(18,2)
	Never FLOAT/DOUBLE for currency

	Flags
	BOOLEAN
	Not STRING or INT for true/false

	Short Text
	STRING
	Delta uses variable length, no need for VARCHAR(n)

	Percentages
	DECIMAL(5,4)
	Store as decimal (0.1234 = 12.34%)

3. Partitioning Strategy
Partitioning divides table data into segments for improved query performance through partition pruning. Effective partitioning is critical for large tables.
3.1 Partitioning Fundamentals
When queries filter on partition columns, Spark reads only relevant partitions, dramatically reducing data scanned.
When to Partition
1. Tables larger than 1 TB
1. Queries consistently filter on specific columns
1. Data has natural time-series or categorical divisions
1. Need to manage data lifecycle (retention, archival)
When NOT to Partition
1. Tables smaller than 100 GB
1. No consistent filter patterns in queries
1. Partition column has high cardinality (>10,000 values)
1. Write patterns would create many small files
3.2 Partition Column Selection
	Data Pattern
	Partition Strategy
	Example

	Time-series
	Date (year/month or year/month/day)
	PARTITIONED BY (report_date)

	Multi-tenant
	Tenant identifier
	PARTITIONED BY (tenant_id)

	Source-based
	Source system identifier
	PARTITIONED BY (source_system)

	Category-based
	Low-cardinality category
	PARTITIONED BY (region)

	Composite
	Multiple columns
	PARTITIONED BY (year, month)

3.3 Creating Partitioned Tables
PySpark
df.write.format('delta')
 .partitionBy('report_year', 'report_month')
 .mode('overwrite')
 .save('Tables/gld_claims_fact')

SQL
CREATE TABLE gld_claims_fact (
 claim_id BIGINT,
 claim_amount DECIMAL(18,2),
 report_year INT,
 report_month INT
) USING DELTA
PARTITIONED BY (report_year, report_month)

3.4 Partition Pruning
Ensure queries can leverage partition pruning:
1. Include partition column in WHERE clause
1. Use direct equality or range predicates
1. Avoid functions on partition column (WHERE YEAR(date) = 2024)
1. Verify pruning with EXPLAIN plan
Note: Check partition pruning: EXPLAIN SELECT * FROM table WHERE partition_col = 'value' should show 'PartitionFilters' in the plan.

4. Delta Lake Features
Delta Lake is the storage layer for Fabric Lakehouse, providing ACID transactions, time travel, and advanced data management capabilities.
4.1 ACID Transactions
Delta Lake guarantees atomicity, consistency, isolation, and durability for all operations.
1. Atomic writes: All-or-nothing commits
1. Consistent reads: No dirty reads during writes
1. Isolated transactions: Concurrent operations don't conflict
1. Durable storage: Data persists after commit confirmation
4.2 Time Travel
Query historical versions of data using version number or timestamp:
By Version
SELECT * FROM gld_claims_fact VERSION AS OF 5
-- or in PySpark:
spark.read.format('delta').option('versionAsOf', 5).load(path)

By Timestamp
SELECT * FROM gld_claims_fact TIMESTAMP AS OF '2024-01-15 10:00:00'
-- or in PySpark:
spark.read.format('delta').option('timestampAsOf', '2024-01-15').load(path)

History
DESCRIBE HISTORY gld_claims_fact
Shows all versions with timestamps, operations, and user information.
4.3 Schema Evolution
Delta Lake supports schema changes without rewriting data:
Add Columns
ALTER TABLE gld_claims_fact ADD COLUMN new_column STRING
New column is added with null values for existing rows.
Merge Schema
df.write.format('delta')
 .option('mergeSchema', 'true')
 .mode('append')
 .save(path)
Automatically adds new columns from DataFrame to table.
4.4 MERGE Operations
Upsert (update or insert) data efficiently:
MERGE INTO target_table t
USING source_data s
ON t.business_key = s.business_key
WHEN MATCHED THEN UPDATE SET *
WHEN NOT MATCHED THEN INSERT *

4.5 Retention Settings
Configure how long historical data is retained:
ALTER TABLE gld_claims_fact
SET TBLPROPERTIES (
 'delta.logRetentionDuration' = 'interval 30 days',
 'delta.deletedFileRetentionDuration' = 'interval 7 days'
)

5. Table Optimization
Optimize tables for query performance through file compaction, clustering, and statistics management.
5.1 OPTIMIZE Command
Compact small files into larger files for efficient reads:
OPTIMIZE gld_claims_fact
Target File Size
Fabric optimizes toward 128MB-1GB files. Small files (<10MB) significantly degrade performance.
When to OPTIMIZE
1. After large batch loads
1. After many incremental updates
1. When query performance degrades
1. Schedule daily/weekly for active tables
5.2 Z-ORDER Clustering
Co-locate related data for columns frequently used in filters:
OPTIMIZE gld_claims_fact ZORDER BY (claim_type, provider_id)
Z-ORDER Guidelines
1. Choose 1-4 columns frequently used in WHERE clauses
1. High-cardinality columns benefit most
1. Order columns by filter importance
1. Re-run after significant data changes
5.3 V-ORDER
Columnar optimization for Power BI Direct Lake:
1. Automatically applied when writing Delta tables in Fabric
1. Optimizes columnar storage for in-memory queries
1. Critical for Direct Lake performance
1. No additional configuration required
5.4 Statistics
Collect table and column statistics for query optimization:
ANALYZE TABLE gld_claims_fact COMPUTE STATISTICS
ANALYZE TABLE gld_claims_fact COMPUTE STATISTICS FOR COLUMNS claim_amount, claim_type

5.5 VACUUM
Remove old files no longer referenced by the Delta log:
VACUUM gld_claims_fact RETAIN 168 HOURS
1. Default retention is 7 days (168 hours)
1. Cannot VACUUM below retention threshold without override
1. Time travel only works for data within retention
1. Schedule weekly VACUUM for large tables
Note: VACUUM permanently deletes data files. Ensure retention period meets recovery requirements before running.

6. SQL Endpoint
Every Lakehouse automatically exposes a SQL endpoint that enables T-SQL queries against Delta tables without additional configuration.
6.1 SQL Endpoint Overview
1. Read-only access to Lakehouse tables via T-SQL
1. Automatic synchronization with Lakehouse table changes
1. Connects to Power BI, SSMS, Azure Data Studio
1. Supports views, stored procedures for reads
1. No additional storage cost (same data)
6.2 Connecting to SQL Endpoint
Connection String
Server: [workspace-name]-[lakehouse-name].datawarehouse.fabric.microsoft.com
Database: [lakehouse-name]
Authentication: Azure Active Directory

Supported Tools
1. Power BI Desktop (DirectQuery/Direct Lake)
1. SQL Server Management Studio (SSMS)
1. Azure Data Studio
1. Any ODBC/JDBC compatible tool
1. Fabric SQL Query Editor
6.3 Creating Views
Create views to simplify access and implement business logic:
CREATE VIEW vw_active_claims AS
SELECT claim_id, member_id, claim_amount, service_date
FROM gld_claims_fact
WHERE status = 'ACTIVE'

6.4 SQL Endpoint Limitations
1. Read-only (no INSERT, UPDATE, DELETE)
1. No stored procedures for data modification
1. Schema determined by Lakehouse (cannot add tables)
1. Performance depends on table optimization
1. No T-SQL specific features (CDC, temporal tables)
6.5 Best Practices
1. Use views to hide complexity from consumers
1. Implement row-level security through views
1. Create semantic layer views for Power BI
1. Optimize underlying tables for SQL patterns
1. Monitor query performance through Query Insights

7. Implementation Patterns
7.1 Bronze Lakehouse Pattern
Landing zone for raw data from source systems.
Structure
/Tables
 /brz_source1_entity1
 /brz_source1_entity2
/Files
 /landing/{source}/{date}/
 /archive/{source}/{date}/

Design Principles
1. Preserve source data exactly as received
1. Add metadata columns (_ingestion_ts, _source_file, _batch_id)
1. Partition by ingestion date
1. Minimal transformation (type casting only if needed)
1. Long retention for replayability
7.2 Silver Lakehouse Pattern
Cleansed canonical model for enterprise data.
Structure
/Tables
 /slv_domain1_entity1
 /slv_domain1_entity2
 /slv_xref_entity_mapping

Design Principles
1. Deduplicated, validated, conformed data
1. Surrogate keys for all entities
1. SCD Type 2 for slowly changing dimensions
1. Business rule enforcement
1. Medium retention (months to years)
7.3 Gold Lakehouse Pattern
Business-ready data products for consumption.
Structure
/Tables
 /gld_fact_claims
 /gld_dim_member
 /gld_dim_provider
 /gld_agg_claims_monthly

Design Principles
1. Star schema for BI workloads
1. Aggregation tables for performance
1. V-Order optimization for Direct Lake
1. Business-friendly naming and documentation
1. Retention based on consumption needs

8. Best Practices
8.1 Design Best Practices
1. Plan schema before implementation—schema evolution has limits
1. Use appropriate data types—avoid STRING for everything
1. Implement consistent naming conventions across all tables
1. Document table purpose, ownership, and SLA
1. Design for query patterns, not just storage
8.2 Performance Best Practices
1. Partition large tables (>100GB) by query filter columns
1. Run OPTIMIZE regularly to compact small files
1. Use Z-ORDER on frequently filtered high-cardinality columns
1. Collect statistics for tables used in complex queries
1. Monitor and address small file proliferation
8.3 Operational Best Practices
1. Schedule OPTIMIZE and VACUUM during low-usage windows
1. Configure retention based on recovery requirements
1. Monitor table growth and partition counts
1. Implement alerting for failed loads
1. Version control all notebook code
8.4 Anti-Patterns to Avoid
1. Too many partitions (>10,000) causes metadata overhead
1. Partitioning small tables adds overhead without benefit
1. Using FLOAT/DOUBLE for currency values
1. Skipping OPTIMIZE leads to small file problem
1. Over-normalizing Gold layer complicates BI
1. Ignoring SQL endpoint for T-SQL consumers

Appendix: Quick Reference
A.1 Common Commands
	Operation
	Command

	Create Table
	CREATE TABLE name USING DELTA

	Optimize
	OPTIMIZE table_name

	Z-Order
	OPTIMIZE table ZORDER BY (col)

	Vacuum
	VACUUM table RETAIN 168 HOURS

	Time Travel
	SELECT * FROM table VERSION AS OF n

	Statistics
	ANALYZE TABLE table COMPUTE STATISTICS

	History
	DESCRIBE HISTORY table

A.2 Document Information
	Document Title
	Lakehouse Design & Implementation Guide

	Version
	1.0

	Last Updated
	January 2026

Page of
